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Abstract
The gut microbiome has been established as a key environmental factor to health. Genetic influences on the gut
microbiome have been reported, yet, doubts remain as to the significance of genetic associations. Here, we provide
shotgun data for whole genome and whole metagenome from a Chinese cohort, identifying no <20% genetic
contribution to the gut microbiota. Using common variants-, rare variants-, and copy number variations-based
association analyses, we identified abundant signals associated with the gut microbiome especially in metabolic,
neurological, and immunological functions. The controversial concept of enterotypes may have a genetic attribute,
with the top two loci explaining 11% of the Prevotella–Bacteroides variances. Stratification according to gender led to
the identification of differential associations in males and females. Our two-stage metagenome genome-wide
association studies on a total of 1295 individuals unequivocally illustrates that neither microbiome nor GWAS studies
could overlook one another in our quest for a better understanding of human health and diseases.

Introduction
The gut microbiota is now recognized to play important

roles in host health and diseases, affecting processes well
beyond the gut1,2. However, owing to modulations by diet
and medication, the gut microbiota is commonly viewed
as highly dynamic, whereas disease markers are con-
sidered to be stable. Studies in mice3 and in human
twins4,5 have observed substantial heritability for some
bacteria. Several genome-wide association studies6–10,
mostly using 16 S rRNA gene amplicon sequencing, have
reported associations between host single-nucleotide
polymorphisms (SNPs) and individual bacterial taxa,
beta-diversity, or pathways. Yet, doubts remain as to the

significance of genetic associations. For example, a recent
study including a heterogeneous population of ~800
individuals reported that the average heritability of gut
microbiota taxa is only 1.9%10. By contrast, Wang et al.9

identified 42 SNPs that together explained 10% of the
variance of the β-diversity. Except for human sequences in
the metagenomic data of the HMP (Human Microbiome
Project), these studies utilized genotyping array data for
host genetics and used 16 S rRNA gene amplicon
sequencing except for one study10, in which low-depth
shotgun data for fecal samples were included. The lack of
high-depth whole-genome sequencing (WGS) data means
that the studies rely on imputation for SNPs and could be
missing potential associations from insertions/deletions
(INDELs), copy number variations (CNVs), especially for
rare variants. In addition, previous studies on the relation
between host genome and the gut microbiota mainly
investigated populations of European ancestry. Thus, how
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host genetics shapes the gut microbiota in Asian popu-
lations needs to be further investigated.
In this study, we identified genetic-microbial associa-

tions using for the first time high-depth sequencing data
for both whole genomes and whole metagenomes, in a
high-depth discovery cohort of 632 healthy Chinese
individuals and a low-depth replication cohort of 663
individuals. With WGS data, we are uniquely positioned
to comprehensively investigate common variants, rare
variants, and CNVs associated with the gut microbiota.
Twelve of the SNPs from previous studies could be
broadly replicated, especially Bacteroides stercoris. Con-
sidering the reported gender differences in the gut
microbiota11,12 and increasing interest in incorporating
the gender perspective into metagenomic and genomic
studies13, we carried out the first gender-specific meta-
genome genome-wide association studies (M-GWAS) to
investigate the differences in gut microbiome-genome
associations between genders. Together, our results reveal
a considerable impact of host genetics on the composition
and functional potential of the gut microbiota enabling
the generation of a number of testable hypotheses for the
association of between genetics and metagenomics in
relation to diseases such as colorectal cancer and cardi-
ometabolic diseases.

Results
Characteristics not reported in European cohorts
To investigate the impact of host genetics on the gut

microbiota, we performed WGS on 632 blood samples to
a mean depth of 44× (range from 32× to 52×) per indi-
vidual, and metagenomic sequencing on 632 stool sam-
ples to an average of 8.57 ± 2.21 GB (Supplementary Fig.
S1a, b and Table S1). This 4D-SZ discovery cohort had a
mean age of 30.7 ± 5.5 years (mean ± s.d., range of 6–35
years), a mean body mass index (BMI) of (21.8 ± 6.3) and
53.5% were females (Supplementary Table S2). We
observed in this Chinese cohort that each genome differs
between one another by 3.9–4.9 million sites (Supple-
mentary Table S3). Variants were directly determined
from the high-depth human genomes, including 38 mil-
lion SNPs, 5 million INDELs, and 40 thousand CNVs. In
all, 6.5 millions of these were common variants (minor
allele frequency (MAF) > 0.05), and 36.5 million were rare
and low-frequency variants (MAF) ≤ 0.05). Taxonomic
profiling of the fecal metagenomes resulted in 19 phyla, 21
classes, 40 order, 77 families, 307 genera, and 519 species.
The top five abundant phyla in this cohort were Bacter-
oidetes (relative abundance of 51.0% ± 13.5%), Firmicutes
(11.2% ± 5.6%), Proteobacteria (2.8% ± 3.7%), Fusobacteria
(0.3% ± 1.1%), and Actinobacteria (0.13% ± 0.27%) (Sup-
plementary Fig. S2). Based on existing knowledge, we
performed all M-GWAS by including covariates for gen-
der, age, BMI, diet and lifestyle factors, stool form,

defecation frequency, as well as the top four PCs to
account for the population structure (Supplementary
Table S2, and Materials and methods).
Unlike M-GWAS using chip data on European cohorts,

we identified suggestive host genetic associations in
relation to enterotypes following the enterotype classifi-
cation approach recommended by Costea et al.14 (Fig. 1,
Supplementary Table S4). Principal coordinate analysis
(PCoA) as well as Dirichlet multinominal mixture (DMM)
model using Bray–Curtis dissimilarity showed that the
microbiomes of this Chinese cohort could be represented
by two clusters dominated by Bacteroides and Pre-
votella15, containing 440 and 178 individuals, respectively
(Fig. 1a). The existence of a Prevotella driven enterotype
possibly reflected the higher prevalence of Prevotella in
developing countries16,17. The top two loci associated with
the Bacteroides–Prevotella dichotomy (PP-B= 2.08 × 10−6

and PP-B= 2.6 × 10−6, respectively, using Prevotella as
cases and Bacteroides as controls in a logistic regression
model) together explained 11% (standard error (SE)= 6%,
P= 8.47 × 10−10 using likelihood ratio test) of the var-
iance of the Bacteroides versus Prevotella enterotype.
Despite a report challenging the negative association
between Bacteroides and Prevotella18, owing to the sta-
tistically well-known loss of one degree of freedom in
compositional data19, genetic associations for these gen-
era also showed the opposite trend. The minor allele of
the top SNP, rs13045408 at BTBD3-LINC01722, posi-
tively correlated with Bacteroides abundance (β= 0.043,
P= 5.3 × 10−3) and negatively correlated with Prevotella
abundance (β=−1.76, P= 1.6 × 10−4) (PP-B= 2.1 × 10−6,
Fig. 1c); on the other hand, the minor allele of the other
SNP rs1453213 at OXR1 positively correlated with Pre-
votella (β= 2.23, P= 1.3 × 10−7) and negatively correlated
with Bacteroides (β=−0.049, P= 3.4 × 10−4) (PP-B=
2.6 × 10−6).
In order to replicate these suggestive associations, we

sequenced a replication cohort of 663 individuals (meta-
genomic shotgun sequencing for stool samples to an
average of 8.59 ± 2.14 GB, but 7× WGS for human gen-
omes (range from 5× to 12×, Supplementary Table S1 and
Fig. S1c, d)). Summary statistics of the covariates was
largely similar (Supplementary Table S2). This replication
cohort comprised 473 Bacteroides-dominated and 190
Prevotella-dominated individuals (Fig. 1b). The top two
associations for the Bacteroides-Prevotella dichotomy
remained (Fig. 1d, PP-B= 0.024 for rs1453213 in OXR1
and PP-B= 0.061 for rs13045408 at BTBD3-LINC01722).
We next investigated associations between genetic

variation and microbiome β-diversity. This analysis found
five loci with marginal genome-wide significance (P < 5 ×
10−8, Fig. 1e, Supplementary Table S5). Three SNPs,
rs60689247 in MAGI2, rs7716962 in XRCC4, and
rs61823500 in C1orf21, are located in the intronic region
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of the genes. MAGI2 is related to multiple phenotypes or
diseases in the GWAS catalog20, including BMI, schizo-
phrenia, coronary artery calcification and type 2 diabetes.
The protein encoded by XRCC4 functions together with

DNA ligase IV and the DNA-dependent protein kinase in
the repair of DNA double-strand breaks. The other two
SNPs, rs11732767 and rs1967284 are located in the
intergenic regions of CDKN2AIP and TBC1D1,
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respectively. CDKN2AIP is critical for the DNA damage
response and TBC1D1 has been linked to Crohn’s disease,
and lymphocyte count. These are interesting associations,
given the increasing incidences of Crohn’s disease and
cancer. The association between rs61823500 at C1orf21
and β-diversity could be replicated (P < 0.05) both in our
replication cohort and a German cohort9. However, the
three previous studies4,9,10 identified a total of 64 SNPs
associated with beta-diversity of the gut microbiota. Of
these, only one SNP was replicated here with nominal
significance (P= 0.013, Supplementary Table S6), and
none was significant after multiple-test correction. Eight
of the 64 SNPs were not found or rare in the Chinese
population (MAF < 0.01). The allele frequencies of these
64 SNPs differed significantly between the Chinese and
the European populations (t-test Pdifference= 1.55 × 10−5,
Supplementary Fig. S3). 391 SNPs have been previously
reported to associate with specific taxa, and 95 of the 391
SNPs were not found or rare in Chinese population. We
were able to replicate 12 of the 296 reported associations
at the phylum level (P < 0.05/296= 1.7 × 10−4, Fig. 1f,
Supplementary Table S7), especially the association with
Bacteroides stercoris10. In summary, huge population
heterogeneity exists, as also known from GWAS studies21,
and it is necessary to identify Asian-specific host
genome–microbiome associations for better under-
standing genome–microbiome interactions among dif-
ferent ethnicities.

Common variants M-GWAS identifying abundant genetic
signals for the gut microbiome
To detect associations between the gut microbiome and

specific genetic variants, we first performed common
variants M-GWAS using a linear model for microbial taxa
present in over 95% of the individuals, and a logistic
model for zero-inflated microbial taxa present in over 10%
of the individuals (Supplementary Table S8). We identi-
fied 320 significant associations involving 37 loci and 51
bacterial taxa (P < 5 × 10−8, Fig. 2a, Supplementary Table

S9). Our discovery GWAS was performed in a manner
consistent with good power given our sample sizes, MAF,
and effect size (Supplementary Table S10). The strongest
signal (P= 1.68 × 10−9, Supplementary Fig. S4a, b) was
observed for the phylum Actinobacteria and its members,
including class Actinobacteria, family Bifidobacteriaceae,
genus Bifidobacterium, species Bifidobacterium longum
and Bifidobacterium breve (Fig. 2a). Actinobacteria asso-
ciated with SNP rs62183161 in the LOC150935 gene,
which has been reported to be linked to body composition
measurement and energy intake22. Prevotellaceae was
associated with SNP rs1453123 in the OXR1 gene (oxi-
dation resistance 1, P= 1.58 × 10−8, Supplementary Fig.
S4c, d), encoding the protein, which controls the sensi-
tivity of neuronal cells to oxidative stress and lack of Oxr1
caused cerebellar neurodegeneration in mice23. Our
results are consistent with the UK twins’5 and Korean
twins’ studies24 which reported that the genera Prevotella
(h= 0.57) and Bifidobacterium (h= 0.457) had high her-
itability. Eggerthella abundance was associated with a
missense variant rs3749147 in the GPN1 gene (P= 3.2 ×
10−8). Notably, rs3749147 has been reported to associate
with the levels of serum triglyceride, gamma-glutamyl
transferase, albumin, and creatinine and several diseases,
including urolithiasis, type 2 diabetes (T2D), esophageal
cancer, schizophrenia, ischemic stroke25 (Supplementary
Table S11). rs3749147 was also correlated with waist
circumference and triglycerides in the GWAS catalog and
the GPN1 gene has been linked to oral cavity cancer,
palmitoleic acid levels and periodontitis (Supplementary
Table S12). In addition to the GPN1 locus, rs142489578 in
the ARAP1 gene, associated with Erwinia amylovora,
rs11236524 near the MOGAT2 gene, associated with
Bacteroides plebeius, and rs2419580 in the RBM20 gene,
associated with Actinomyces odontolyticus, were also
linked to T2D. SNP rs2902875 in the MIR4422HG gene
associated with Simonsiella muelleri was also associated
with low density lipoprotein cholesterol, and rs4714598 in
the TRERF1 gene, associated with unclassified Prevotella

(see figure on previous page)
Fig. 1 Identifying host genetic variants associated with microbiome enterotypes and principal coordinates (PCoAs, computed using
Bray–Curtis dissimilarity). a The enterotype plot of 618 individuals in discovery cohort. Two clusters were shown with red dots representing
Bacteroides-dominated enterotype (440 individuals) and blue dots representing Prevotella-dominated enterotype (178 individuals). The first two
principal components (PCoA1 and PCoA2) are shown, with the amount of variation explained are reported for each axe. b The enterotype plot of 663
individuals in replication cohort. Two clusters were shown with red dots representing Bacteroides-dominated enterotype (473 individuals) and blue
dots representing Prevotella-dominated enterotype (190 individuals). c The minor allele G of SNP rs13045408 at BTBD3-LINC01722 were positively
correlated with Bacteroides abundance and negatively correlated with Prevotella abundance in discovery cohort. However, SNP rs1453213 at OXR1
had opposite effect effects to enterotypes compared with that of rs13045408. d rs13045408 and rs1453213 associated with “Bacteroides-Prevotella”
enterotype in replication cohort (PP-B= 0.061 and 0.024, respectively). e Manhattan plots of the host genetic variants associated with microbiome
β-diversity (computed as Bray–Curtis dissimilarity matrix). The red line represents a genome-wide significant P value (5 × 10–8) and blue line
represents suggestive P value (10−5). Five top loci were marked with gene name. f The replicated P value in this study for the 391 SNPs previously
reported to be significantly associated with the microbiome. 12 SNPs are successfully replicated at P 1.7 × 10−4= 0.05/296 (blue line), nine of which
were most associated with Bacteroides stercoris.
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sp. oral taxon 317 has also been associated with Eosino-
phil cell count in both the BioBank Japan and GWAS
catalog studies. Taken together, 27 and seven of the 37
genome-wide significant loci have been reported to
associate with traits or diseases in the BioBank Japan and
GWAS catalog, respectively (Supplementary Tables S11
and S12).
Among the 320 associations involving the 37 loci

identified in the discovery cohort, 220 associations
involving 10 loci were covered by the low-depth replica-
tion dataset. We were able to replicate 3 of the 10 loci
with the same effect (P < 0.05): rs13420238 in LOC150935
had a P= 0.007 with B. longum, rs1453123 in OXR1 had a
P= 0.006 with Prevotellaceae and rs79499638 near
PLXDC2 had a P= 0.043 with Roseburia intestinalis
(Fig. 2b–d, Supplementary Table S9).

Functional annotations using the FUMA tool26 further
showed that the 37 loci mapped to 109 genes, which are
associated with three main traits and diseases in the
GWAS catalog20 (false discovery rate (FDR) adjusted P <
0.05, Fig. 2e): (1) metabolism related traits: waist cir-
cumference—triglycerides, metabolite levels (homo-
vanillic acid), serum uric acid levels in response to
allopurinol in gout, acute insulin response, fasting blood
glucose, total cholesterol levels and HDL cholesterol
levels; (2) immune-related diseases: inflammatory skin
disease, systemic lupus erythematosus, and type 2 dia-
betes; (3) nervous system related disease: Alzheimer’s
disease (cognitive decline) and loneliness. Furthermore,
we performed gene set enrichment analyses and identified
16 significantly enriched KEGG or GO terms after FDR
correction (P < 0.05, Fig. 2f), including multiple metabolic
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process such as propanoate, fatty acid, diacylglycerol, and
alditol metabolism, as well as neutral lipid biosynthetic
processes.
In addition, we investigated genetic variants that cor-

related with the functional capacity of the gut microbiota
according to gut metabolic module (GMMs)27. We found
eight loci significantly associated with seven GMMs (P <
5 × 10−8, Supplementary Table S13). The strongest asso-
ciation was identified for maltose degradation and nine
SNPs (P= 4.5 × 10−9) in the SLC41A2 gene encoding the
solute carrier family 41 member 2, involved in transport
of glucose and other sugars, bile salts and organic acids,
metal ions and amine compounds. We also found genetic
signals for butyrate production and mucin degradation.
Mucin degradation has been implicated in metabolic
regulation, obesity and type 2 diabetes. Three SNPs near
the CCR3 gene associated with mucin degradation and the
CCR3 gene has been associated with obesity-related traits
and coronary artery disease (P < 1.0 × 10−8) in a
transcriptome-wide association study28. Our results sug-
gest that mechanistic investigations of these SNPs should
take the gut microbiome into consideration.

Rare variants- and CNVs-based M-GWAS further reveal
genetic impact on the gut microbiome
Taking advantage of the high-depth whole-genome and

metagenome sequencing data, we considered whether
rare variants in any gene and copy number variants
contributed to the gut microbiota composition. We ten-
tatively identified 60 associations involving 47 genes and
54 bacterial taxa (P < 2.14 × 10−6= 0.05/27874 for Bon-
ferroni correction of 27,874 individual genes, Supple-
mentary Table S14), including the PCSK9 gene, a target
for lowering LDL cholesterol. We evaluated the interac-
tion between proteins encoded by the 47 genes by con-
structing protein–protein interaction (PPI) networks. We
found that 34 of the encoded proteins participated in the
network (Supplementary Fig. S5). These 34 proteins
exhibited more interactions than expected for a random
set of proteins of similar size (enrichment P= 0.037),
indicating a functional intersection of the 34 microbiome-
associated proteins. KEGG pathway analysis of the 34
genes showed enrichment in two main pathways (Sup-
plementary Table S15), including hsa03030:DNA repli-
cation (FDR= 0.002) and hsa01100:Metabolic pathways
(FDR= 0.044).
CNVs-based M-GWAS identified 18 CNVs associated

significantly with 20 bacterial taxa (P < 6.25 × 10−6= 0.05/
8000 for Bonferroni correction of 8 K common CNVs
with MAF > 0.01, Supplementary Table S16). In all, 13 of
these CNVs overlap with CNVs recorded in the Database
of Genomic Variants (DGV)29. Eight CNVs reside within
genes, mainly in intronic regions. We found that the
butyrate-producing bacterium SS3/4 associated with a

28.7 kb CNV region (chr4:69384168−69412841, P= 3.1 ×
10−6, frequency= 0.03) located 67 kb downstream of the
UGT2B4 gene. The CNV includes many variants, which
involved in expression quantitative trait loci and regulated
the expression of UGT2B4 in heart tissue and UGT2B28
in the esophagus mucosa and liver (Supplementary Table
S17), consistent with functions of butyrate or other bac-
terial metabolites in these tissues. Moreover, one SNP
rs12505338 and three other SNPs in the CNV region have
been associated with serum concentration of stearate
(18:0) (P= 9.3 × 10−5) and glutamate (P= 7.3 × 10−6),
respectively (Supplementary Table S18), according to the
NHLBI GRASP catalog30. Thus, associations between the
gut microbiome and rare variants and CNVs may also
have important functional implications in relation to host
physiology.
Common variants-, rare variants-, and CNVs- based

associations separately explained 8.3%, 11.4%, and 4.9% of
the microbiome composition (Supplementary Table S19).
Combined they explained 20.6% of the microbiota com-
position. In addition, the average occurrence rate of gut
microbiome taxa associated with common variants or rare
variants were 0.768 and 0.596, respectively (Supplemen-
tary Tables S9 and S14, Wilcoxon test, P= 0.008). These
results indicate that rare host variants also contribute to
shaping of the gut microbiome, especially for less-
common members of the community.

A gene-bacteria axis in gender-differential metabolic and
neuronal functions
In all, 53.5% of this cohort were female, permitting a

comparison between sexes. Females showed higher alpha
diversity than men (Wilcoxon test, P < 0.05, Supplemen-
tary Fig. S6), and we identified 32 taxa that differed sig-
nificantly between sexes in discovery cohort, 27 of which
were consistently validated in the replication cohort (FDR
q < 0.1 using MaAslin, Supplementary Table S20). Phylum
Actinobacteria and its members, including class Actino-
bacteria, order Bifidobacteriales, family Bifidobacter-
iaceae, genus Bifidobacterium were all significantly
enriched in females. By contrast, Fusobacterium was sig-
nificantly enriched in males.
Since the gut microbiome exhibited striking difference

between males and females, we performed a sex stratified
association analysis of host genetic variants and gut bac-
teria, the 37 associations were overlapped between gen-
ders (Supplementary Table S21, P < 0.05 both in males
and in females, and P < 5 × 10−8 in combined results),
identical to the combined analysis (Supplementary Table
S9). Especially, we identified 33 male-specific (P < 5 × 10−8

in males but P > 0.05 in females) and 37 female-specific
associations (P < 5 × 10−8 in females but P > 0.05 in males)
linked to gut bacteria (Fig. 3a and Supplementary Table
S22). We compared the effect sizes of identified variants
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between genders, and confirmed that all the variants
showed a significant difference (Pdifference < 0.01). Five loci
of the 70 associations linked to traits or diseases in GWAS
catalog (Supplementary Table S23). Rs4650205 in
NEGR1-LINC01360 gene significantly associated with the
abundance of genus Acidaminococcus in males (P=
4.87 × 10−8) but not in females (P= 0.48), and its proxy
SNPs (linkage disequilibrium r2 > 0.6) were reported
linked to multiple nervous system disorders such as aut-
ism spectrum disorder, schizophrenia, depression and
migraine by substantial GWAS studies. Female-specific
SNP rs61781314 in LEPR gene was associated with both
genus Eggerthella and species Eggerthella lenta, and its
proxy SNP rs17415296 linked to blood protein levels (P=
4 × 10−2 29). Eggerthella lenta as an opportunistic patho-
gen have been reported to underlie human infections and
enriched in T2D31, rheumatoid arthritis (RA)32 and
atherosclerotic cardiovascular disease (ACVD) patients33.
The protein encoded by LEPR is a receptor for leptin (an
adipocyte-specific hormone that regulates body weight),
and is also involved in the regulation of fat metabolism
and pituitary dysfunction. In the low-depth replication
cohort (327 males and 336 females), associations includ-
ing the male-specific association of rs6871146 with Lac-
tococcus (Supplementary Table S22, βmale= 0.42 and
Pmale= 0.027, βfemale=−0.47 and Pfemale= 0.062) and the
female-specific association of rs7165633 and Mobiluncus
mulieris (βmale=−0.009 and Pmale= 0.96, βfemale= 0.48
and Pfemale= 0.008) were replicated. The female-specific
association with Mobiluncus suggests an intestinal reser-
voir for the bacterium which is involved in vaginal
infections34.
We investigated the overlapped genes between gender-

specific genes and traits or diseases-associated genes in
GWAS catalog (Fig. 3b–e), then found that genes located
in female-specific loci enriched in four phenotypes,
including two metabolic traits, i.e., metabolite levels
(homovanillic acid) and C-reactive protein levels or tri-
glyceride levels (pleiotropy). Genes located in male-
specific loci enriched in mainly the systemic lupus ery-
thematosus related traits. Interestingly, one locus
chr19:53772987-53796549 was both male and female-
specific locus although associated with different taxa in
different genders, and this locus located nearby the gene
family MIR371A-MIR372-MIR373. WikiPathway analysis
showed this gene family related to “miRNAs involved in
DNA damage response”, suggesting that gut bacteria may
participated in DNA damage response in both genders. In
addition, gender-specific loci were also enriched in the
pathway “leptin insulin overlap”, consistent with the
association between LEPR gene and Eggerthella lenta as
described above. Moreover, gene set enrichment analysis
identified 37 female-specific loci involved in pathways
“olfactory signaling” and “signaling by G-protein-coupled

receptor (GPCR)”, females had been reported superior to
males in olfactory abilities35 and had higher levels of G-
protein-coupled kinases [GPCR kinase (GRK)] 3 and 5
than male36. Male-specific loci related to pathways “sys-
temic lupus erythematosus” and “leishmania Infection”.
Taken together, the gut microbiome exhibited differential
associations with the human genome in males and
females, and might contribute to different metabolic and
neuronal functions as well as disease susceptibility.

M-GWAS helps understand biomarkers from MWAS
We note that our M-GWAS discovered signals for some

of the bacteria often reported from metagenome-wide
association studies (MWAS)1, e.g. three butyrate-
producing species, R. intestinalis, Eubacterium rectale
and Faecalibacterium prausnitzii, have been associated
with healthy controls in MWAS for T2D, ACVD and
obesity as well as Alistipes shahii associated with lower
BMI31,33,37 (Fig. 4a). We observed the species R. intesti-
nalis associated with rs79499638 (P= 3.81 × 10−8) and
rs760646544 (a insertion of CTGTT, P= 1.75 × 10−8)
near PLXDC2 (related to nidogen-1 measurement and
diabetic retinopathy in GWAS catalog). Species Eubac-
terium rectale negatively associated with rs1555188 near
PHF21B in females (P= 4.52 × 10−9) but not in males (P
= 0.55). Genus Faecalibacterium and species F. praus-
nitzii were identified linked to DYNLL1 gene (P= 8.83 ×
10−8) which included 94 rare variants in gene-based
association analysis. Alistipes shahii associated with
rs72627489 near SOWAHC in gender-combined analysis
(P= 8.58 × 10−9) and rs914338 near UNC93A in male-
specific analysis (P= 2.40 × 10−8). We confirmed the
association between R. intestinalis and rs79499638 and
rs760646544 near PLXDC2 in replicate cohort (P= 0.043,
Fig. 2d, Supplementary Table S9). Consistently, the
abundance of R. intestinalis showed higher correlation in
monozygotic compared to dizygotic twins from the Uni-
ted Kingdom5.
Bifidobacterium dentium, enriched in RA32, ACVD as

well as schizophrenia patients. CNVs-based M-GWAS
identify the association between Bifidobacterium dentium
and nucleoredoxin (NXN) with copy loss of 642 bp
(chr17:898377−899018, P= 4.11 × 10−6, Fig. 4b), and
nucleoredoxin 1 as the oxidoreductase protects anti-
oxidant enzymes such as catalase from ROS-induced
oxidation in plant cells38. In addition, NXN was sig-
nificantly high expressed in normal tissue samples com-
pared with colon adenocarcinoma (COAD) and rectum
adenocarcinoma (READ) cases (Fig. 4d). Similarly, Par-
vimonas micra is enriched in colorectal cancer1, its
associated host gene PARVB (Parvin Beta, rs35928604,
P= 1.55 × 10−8, Fig. 4c) was overexpressed in colorectal
cancer including COAD and rectum adenocarcinoma
(READ) (Fig. 4e), which supported the previous study that
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reported overexpression of PARVB correlated sig-
nificantly with lymph node metastasis and tumor inva-
sion39. Bifidobacterium dentium, Parvimonas micra and
Porphyromonas asaccharolytica are all bacteria found in
the human oral cavity that are normally in low abundance
in the colon. These findings are consistent with the notion
that immune defense are important drivers of host-
microbiome co-evolution in addition to metabolism.

Discussion
The present study performed a comprehensive M-

GWAS analysis integrating a total of 1295 host whole-
genome and fecal whole metagenome sequencing to
investigate the associations between genetic variants and
gut microbiome in Chinese adults. Using common var-
iants-, rare variants-, and CNVs-based association analysis
without loosening the p value cutoff, we identified 37 loci,
47 genes and 18 CNVs significantly associated with gut
bacterial taxa, and they additively explained no less than
20% of the microbiome composition. We observed no
study-wise significant associations (P < 1 × 10−10 for over
500 taxa) in this study. However, consistent with previous
M-GWAS from Germany, the Netherlands and
Israel7,9,10, abundant signals were only detected with
genome-wide significance. Furthermore, a meta-analysis
of tens of thousands of individuals of mostly European
origins only identified study-wide significance in LCT

locus40. We refrained from reporting more suggestive
associations except for the enterotype results. More
recently, M-GWAS using microarray and amplicon data
of 1475 individuals from Guangzhou city of China41 found
11 SNPs significantly associated with taxa in the discovery
stage before adjustment (P < 5 × 10−8). We could replicate
5 of the 11 SNPs at phylum level (P < 0.05). These iden-
tified M-GWAS signals need to be replicated in more
independent Chinese samples
Notably, although insufficient power to detect variants

(rare variants and CNVs etc.) in low-depth sequencing
data, we still replicated our key findings for “enterotypes”,
T2D-KOs, common variants' associations, gender-
differential associations, and MWAS markers (Figs. 1–4,
Supplementary Tables S9 and S22). The majority of
associations lie in metabolic, neurological and immuno-
logical functions, which is particular interesting con-
sidering the rapid changes in lifestyle and environmental
factors in China and the rising disease incidences. For
example, a good portion of our Chinese cohort still harbor
Prevotella instead of Bacteroides, compared with western
country17. To investigate the effect of host genome on
enterotype, we identified two suggestive loci explaining
11% of the Prevotella–Bacteroides variances. These two
tentative associations are not yet genome-wide significant
(PP-B= 2.08 × 10−6 and PP-B= 2.6 × 10−6, respectively,
using Prevotella as cases and Bacteroides as controls in

Fig. 4 M-GWAS helps understand biomarkers from MWAS. a Venn diagram showing the bacteria that identified associated with genetic variants
and were reported in multiple MWAS studies, including type 2 diabetes (T2D), rheumatoid arthritis (RA), atherosclerotic cardiovascular disease (ACVD),
colorectal cancer (CRC), and obesity. Bacteria in overlapping areas indicates it was reported in two or more MWAS studies. The bacteria marked in red
represents enrichment in cases, and green represents enrichment in controls. b A copy loss of 642 bp (marked by green circle) in NXN gene was
detected in Chinese individuals. c Box plots of the NXN gene expression in COAD and READ cases compared with normal tissue samples using GEPIA
tool. COAD colon adenocarcinoma, READ rectum adenocarcinoma. d Region plot of the most significant loci for PARVB gene. Each point represents a
SNP or INDEL and is colored with the r2 value as calculated in this cohort. The lead SNP rs35928604 (P= 1.55 × 10−8) is highlighted with red. e As in c,
box plots of the PARVB gene expression in COAD and READ cases compared with normal tissue samples.
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logistic regression model), but we feel obliged to report
them after replication, given the long-lasting arguments in
multiple studies14,42,43 over the concept of “enterotypes”.
It is intriguing that heterozygous individuals show two
clusters of either high or low Prevotella (Fig. 1). In addi-
tion, we identified heritability and specific loci for Pre-
votella species; the minor allele T of rs1453213 at OXR1
was consistently correlated with higher abundance of
family Prevotellaceae and Prevotella species, and higher
frequency of allele T in Asian population (f= 0.39) than
European population (f= 0.28) may also explain the
enrichment of Prevotella in Asian in addition to the diet.
More cohorts from developing countries in the future
with a higher fraction of Prevotella-dominated individuals
would help further confirm these results.
Due to the emphasis on diet in early studies and

recently on medication, MWAS1,31 have received even
more controversy than GWAS. Besides diet and medica-
tion, we also took into account physical activity in this
4D-SZ cohort44,45. Here we find that fecal biomarkers
previously reported by MWAS studies on colorectal
cancer and metabolic diseases have some associations
with host genetics, whereas some taxa especially some
spore-forming bacteria lacked host genetic associations.
With 1 liter of saliva swallowed every day, genetically
encoded responses to ectopic presence of oral bacteria in
the gut may be a common theme in a number of diseases
investigated by MWAS, as has been shown for inflam-
matory bowel disease46.
Gender stratification GWAS could be used to identify

novel loci that may have been previously undetected in
gender-combined GWAS and had been performed in
human complex traits13,47, whereas none had done it for
gut microbiome. Here, we performed the first gender-
specific M-GWAS and identified 33 male-specific
(involved in inflammation, such as SLE and leishmania
infection) and 37 female-specific associations (involved in
olfactory signaling and GPCR signaling) linked to gut
bacteria by gender-specific analysis, suggesting the
importance of discriminating gender in M-GWAS and it
will help better understand the underlying molecular
mechanisms between genders. In summary, our results
first reveal the influence of host genome on gender-
differential gut bacteria and remind researchers to con-
sider the effect of community types and gender stratifi-
cation in the meta-analysis of the heterogeneous large
population.

Materials and methods
Cohort descriptions
632 individuals were enlisted in the discovery cohort

and 663 individuals were enlisted in the replication
cohort, as part of the larger effort of 4D-SZ study44,45.
Questionnaires were collected through a cell phone

application. After excluding individuals that were preg-
nant, taking antibiotics within one month or suffering
from diseases, 620 individuals in the discovery cohort and
663 individuals in the replicate cohort were remained. All
participants provided blood samples during physical
examination. The MGIEasy stool collection kit containing
a room temperature stabilizing reagent that preserves
metagenomic samples48, were also given to the volun-
teers, who handed in fecal samples on the same morning
or the day after. All samples were retrieved from the boxes
in front of restrooms and then stored at −80 °C before
DNA extraction. For blood sample, buffy coat was isolated
and DNA was extracted using HiPure Blood DNA Mini
Kit (Magen, Cat. no. D3111) according to the manu-
facturer’s protocol. Feces were collected by MGIEasy and
stool DNA was extracted in accordance with the Meta-
HIT protocol31 as described previously. The DNA con-
centrations from blood and stool samples were estimated
by Qubit (Invitrogen). In all, 500 ng of input DNA from
blood and stool samples were used for library formation
and then processed for single-end 100 bp sequencing on
BGISEQ-500 platform49.
The study was approved by the Institutional Review

Boards (IRB) at BGI-Shenzhen, and all participants pro-
vided written informed consent at enrollment.

High-depth WGS alignment and SNP/INDEL calling in the
discovery cohort
Whole-genome reads were aligned to latest reference

human genome GRCh38/hg38 with BWA50 (version
0.7.15) with default parameters. The reads consisting of
base quality <5 or containing adaptor sequencing were
filtered out. The alignments were indexed in the BAM
format using Samtools51 (version 0.1.18) and PCR dupli-
cates were marked for downstream filtering using
Picardtools (version 1.62). The Genome Analysis Toolkit’s
(GATK52, version 3.8) BaseRecalibrator created recali-
bration tables to screen known SNPs and INDELs in the
BAM files from dbSNP (version 150). GATKlite (v2.2.15)
was used for subsequent base quality recalibration and
removal of read pairs with improperly aligned segments as
determined by Stampy. GATK’s HaplotypeCaller were
used for variant discovery. GVCFs containing SNVs and
INDELs from GATK HaplotypeCaller were combined
(CombineGVCFs), genotyped (GenotypeGVCFs), variant
score recalibrated (VariantRecalibrator), and filtered
(ApplyRecalibration). During the GATK VariantRecali-
brator process, we took our variants as inputs and used
four standard SNP sets to train the model: (1) HapMap3.3
SNPs; (2) dbSNP build 150 SNPs; (3) 1000 Genomes
Project SNPs from Omni 2.5 chip; and (4) 1000 G phase1
high confidence SNPs. The sensitivity threshold of 99.9%
to SNPs and 99% to INDELs were applied for variant
selection after optimizing for Transition to Transversion
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(TiTv) ratios using the GATK ApplyRecalibration com-
mand. After applying the recalibration, there are
43,342,216 raw variants left, including 38 million SNPs, 5
million INDELs.
We applied a conservative inclusion threshold for var-

iants: (i) mean depth >8 ×; (ii) Hardy-Weinberg equili-
brium (HWE) P > 10−5; and (iii) genotype calling rate
>98%. We demanded samples to meet these criteria: (i)
mean sequencing depth >20 ×; (ii) variant call rate >98%;
(iii) no population stratification by performing principal
components analysis (PCA) analysis implemented in
PLINK53 (version 1.07) and (iv) excluding related indivi-
duals by calculating pairwise identity by descent (IBD, Pi-
hat threshold 0.1875) in PLINK. Only 2 samples were
removed in quality control filtering and 618 individuals
entered into subsequent analysis.

CNV calling
The CNV call set were produced using the SpeedSeq54

pipeline, followed by the svtools package (v0.2.0; https://
github.com/hall-lab/svtools). In brief, speedseq sv, which
comprises LUMPY for SV calling based on discordant
pairs and split-reads; svtyper for SV genotyping; and
cnvnator for read-depth based CNV detection; was run on
each sample individually. The individual-level calls were
sorted and merged using svtools lmerge, and then each
sample was re-genotyped and copy number annotated at
all variant positions using svtools genotype and copy
number, and pasted into a single cohort-level VCF. For
filtering, inversion calls and adjacencies (i.e., BNDs) were
excluded. The CNV was defined as known in the DGV29

(http://projects.tcag.ca/variation) if it had 70% region
overlapped with one CNV in DGV.

Low-depth WGS alignment and SNP/INDEL calling in the
replicate cohort
We used BWA to align the whole-genome reads to

GRCh38/hg38 and used GATK to perform variants call-
ing by applying the same pipelines for high-depth WGS
data. After finishing the GenotypeGVCFs process, we got
29,906,793 raw variants. A more stringent process (hard
filter not VQSR) in the GATK VariantRecalibrator stage
compared with high-depth WGS was then used, as are
recommended for low-coverage whole-genome data, to
filter the uncertain genotype calls and keep only high-
quality variants. Specifically, we excluded individual SNPs
with low mapping quality (Q < 20) and SNPs with low
depth (DP < 3). Then we kept variants with <30% missing
information. Since alleles at lower frequencies are less
informative for association analysis, we excluded from
downstream analysis SNPs that are at frequency of less
than 0.5% in our sample, leaving 779,521 highly reliable
variants. All these high-quality variants were then impu-
ted using BEAGLE 555 with 618 high-depth WGS data set

as reference panel. We retained only variants with
imputation information >0.7 and got 5,318,809 imputed
variants. Finally, we further filtered this set to keep var-
iants with Hardy–Weinberg equilibrium P > 10−5 and
genotype calling rate >90%, yielding 5,249,443 variants for
subsequent analysis.
To evaluate the data quality, we sequenced 27 samples

with both high-depth and low-depth WGS data and then
compared the 5,318,809 variants between them for each
individual. The average genotype concordance was
98.66% (Supplementary Table S24).

Metagenomic profiling
There were mainly two steps for metagenomic profiling:

(1) computation of relative gene abundance. The high-
quality metagenomic sequencing reads were first aligned
to human genome hg38 using SOAP256 (version 2.22).
Human (host) reads were removed if the criterion of
identity ≥90% in alignment. Then, high-quality reads were
aligned against integrated gene catalog (IGC)57 by SOAP2
using the criterion of identity ≥95%. To eliminate the
influence of sequencing amount in comparison analyses,
we downsized the unique IGC mapped reads to 20 million
for each sample. After reads aligning to gene, the gene
abundance profiling was determined as previously
described31. (2) Construction of gut taxa, KO and GMM
profiles. For the species profile, we used phylogenetic
assignment of each gene from the original gene catalog
and summed the relative abundance of genes from the
same species to yield the abundance of that species.
Relative abundance of each species in a sample con-
stituted the species profile of that sample. The relative
abundance profiles of phylum, order, family, class, genus
and KEGG58 orthologous groups (KOs) were determined
from the gene abundances in the same method. In addi-
tion, GMMs reflect bacterial and archaeal metabolism
specific to the human gut, with a focus on anaerobic
fermentation processes27. The current set of 103 GMMs
was built through an extensive review of the literature and
metabolic databases, inclusive of MetaCyc59 and KEGG,
followed by expert curation and delineation of modules
and alternative pathways. We identified 98 common
GMMs present in 50% or more of the samples. The code
about metagenomic profile construction was also shared
in github: https://github.com/Scelta/cOMG.

Covariates used in this study
As part of the 4D-SZ cohort, all participants in this

study had records of multi-omics data, including
anthropometric measurement, stool form, defecation
frequency, diet, lifestyle, blood parameters, hormone,
etc.44. We tested for associations between these environ-
mental factors and microbiome β-diversity at the genus
level. The effect size (R-square) and significance of the

Liu et al. Cell Discovery             (2021) 7:9 Page 11 of 15

https://github.com/hall-lab/svtools
https://github.com/hall-lab/svtools
http://projects.tcag.ca/variation
https://github.com/Scelta/cOMG


mentioned variables were estimated using both “envfit”
function and “capscale” function in vegan (R 3.2.5, vegan
package 2.4-4). The two methods produced the consistent
results that gender, BMI, defecation frequency and the
lifestyle of stay up late were the strongest factors to
explain gut microbiome composition (Supplementary
Table S2). In addition, given the effects of diet and life-
styles on specific taxa, we finally included age, gender,
BMI, defecation frequency, stool form, 12 diet and life-
style factors, as well as the top four principal components
(PCs) as covariates for subsequent M-GWAS analysis.

Enterotype analysis
The enterotypes analysis was performed using genus-level

gene abundance data according to the DMM-based clus-
tering approach60,61 and two enterotypes were identified
among the 618 healthy Chinese individuals in discovery
cohort, including Bacteroides (enterotype 1, n= 440) and
Prevotella (enterotype 2, n= 178). Using the same method,
this replicate cohort comprised of 473 Bacteroides-domi-
nated and 190 Prevotella-dominated individuals. We used
logistic model implemented in PLINK to run a GWAS for
genetic variation and the enterotype phenotype (i.e., Bac-
teroides and Prevotella; dichotomous trait). We estimated
the proportion of enterotypes’ variance explained by top
two loci using the restricted maximum likelihood method
implemented in GCTA.

Association analysis for microbiome β-diversity
The microbiome β-diversity (between-sample diversity)

based on genus-level abundance data were generated using
the “vegdist” function (Bray–Curtis dissimilarities). Then,
we performed PCoA based on the calculated beta-diversity
dissimilarities using the “capscale” function in “vegan”. The
associations between genetic variants and microbiome
β-diversity was performed using microbiomeGWAS62 tool.

Genome-wide association analysis for gut bacteria
We tested the associations between host genetics and gut

bacteria using linear or logistic model based on the abun-
dance of gut bacteria. The abundance of bacteria appeared
in over 95% of individuals was transformed by the natural
logarithm and the outlier individual who was located away
from its mean by more than five standard deviations was
removed, so the abundance of bacteria could be treated as
quantitative trait. Otherwise, we dichotomized bacteria into
presence/absence patterns to prevent zero inflation, then
the abundance of bacteria could be treated as dichotomous
trait. More specifically, a total of 718 gut taxa present in
over 10% individuals were analyzed in this study. The 331
taxa that appeared in over 95% of individuals were used as
quantitative traits, and the other 387 taxa that appeared in
<95% of individuals but over 10% individuals were used as
binary traits (Supplementary Table S8).

Next, for the common variants with MAF > 5%, we
performed a standard single variant (SNP/INDEL)-based
GWAS analysis via PLINK using a linear model for
quantitative trait or a logistic model for dichotomous trait,
a threshold of P < 5 × 10−8 was used for genome-wide
significance. We used the same methods for CNVs-based
association analysis and set a significance threshold at P <
6.25 × 10−6 accounting for 8006 common CNVs (MAF >
1%). For rare variants-based association analysis, we
applied the Sequence Kernel Association Test63 (SKAT)
to the rare variants (MAF ≤ 5%) for each gene. Gene
regions were annotated using the RefSeq64 database with a
total of 27,874 genes. We only included the genes, which
had five or more rare variants (as recommended by the
SKAT authors) for testing; 22,015 genes satisfied this
requirement. Associations were considered significant
with P < 2.14 × 10−6 (equal to 0.05/22,015). When testing
all the association analysis, we adjusted for gender, BMI,
defecation frequency, stool form, self-reported diet, life-
style factors and the first four PCs.
Gene-based analysis identified 40 genes for microbial

taxa. To quantify the fraction of microbiome variance that
could be inferred from gene-based analysis (actually rare
variants), we first selected 200 top-ranking rare variants
(not in linkage equilibrium) according to their association
with taxa, then performed a greedy stepwise algorithm, in
which at each iteration we added the most significant
variant to the inferred variant sets added in previous
iterations. Before adding each variant, we performed 1000
permutation tests and verified that its contribution was
greater than in at least 50% of these permutations using
“capscale” function. If not, we stopped the algorithm. In
each permutation, we assigned the top 200 rare variants of
each individual to a random individual, and then reran the
entire analysis. Finally, 60 loci were used to infer the
variance of rare variants explained for microbial compo-
sition. For 37 loci from common variants-based associa-
tion analysis, 60 loci from above rare variants analysis and
18 loci from CNVs-based association analysis, the effect of
each significant loci on genus-level composition was
determined using bray-distance based redundancy analy-
sis (“capscale” in the “vegan” package in R). After calcu-
lating the contributions of each significant loci on genus-
level composition, we estimated the additive effects of
these significant loci on genus-level composition using the
“ordiR2step” function in the “vegan” package in R. The
ordiR2step function performs forward model choice
solely on adjusted R2. The adjusted R2 of the model
including 37 significant common variants was calculated
as the variance explained by common variants for
microbial composition. The adjusted R2 of the model
including 60 significant rare variants was calculated as the
variance explained by rare variants for microbial compo-
sition. The adjusted R2 of the model including
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18 significant CNVs was calculated as the variance
explained by CNVs for microbial composition. The
adjusted R2 of the model including all 115 significant
variants was calculated as the variance explained by host
genetics for microbial composition.

Functional annotation of significant loci
Genome-wide significant loci identified in M-GWAS

were mapped to genes using SNP2GENE in FUMA26

(http://fuma.ctglab.nl/). We first converted the loci posi-
tions from hg38 to hg19, then used the positional mapping
method and maps variants to genes based on physical dis-
tance within a 20 kb window. Mapped genes were further
investigated using the GENE2FUNC procedure, which
provides hypergeometric tests of enrichment of the list of
mapped genes in 53 genotype-tissue expression (GTEx)
tissue-specific gene expression sets, 7246 MSigDB gene sets,
and 2195 GWAS catalog20 gene sets. Specifically, the
background genes in the GENE2FUNC is there for the N,
which is supposed to be all the genes we considered to
select a set of interested genes n. And we have a tested gene
set with m genes. The number of overlapped genes between
n and m is x. Therefore, the null hypothesis is finding x
genes given N, n, and m is not more than expected. For
example, the GWAS catalog gene sets were defined by
extracting genes for each trait from the GWAS catalog.
Using the GENE2FUNC procedure, we examined whether
the mapped genes enriched in some specific diseases or
traits in GWAS catalog as well as whether enriched in
specific GO, KEGG et al. The significant results were
selected if Bonferroni-corrected P < 0.05.

PPI network analysis
The PPI network was constructed with the Search Tool

for Retrieval of Interacting Genes/Proteins (STRING65,
https://string-db.org/cgi/input.pl/). Given a list of the
proteins as input, STRING can search for their neighbor
interactors, the proteins that have direct interactions with
the inputted proteins; then STRING can generate the PPI
network consisting of all these proteins and all the
interactions between them. We first constructed the PPI
network with the 47 significant genes as input, the net-
work displayed on the webpage was gathered into two
main clusters and then exported as a high-resolution
bitmap. Meanwhile, we got the KEGG pathway enrich-
ment results, which were used to characterize the biolo-
gical importance of the clusters.

Gender-specific GWAS analysis for microbiome
We compared the difference of diversity and microbiota

composition between genders. Diversity was calculated
for Shannon index based on genus-level relative abun-
dance of microbial taxa. Pairwise comparisons were per-
formed using non-parametric test (Wilcoxon test). The

multivariate association with linear models (MaAsLin)66

package was used to identify the differentially abundant
taxa between genders. Only taxa with q values < 0.05 are
identified as significantly enriched in males or females.
We performed gender-specific GWAS analysis in males

and females separately, by using the same methods as
described in the microbiome-genome-wide association
analysis. Male-specific variants were identified as (i) sig-
nificantly associated with taxa in males (Pmale < 5 × 10−8)
and not significant in females (Pfemale > 0.05), and (ii) had
nominal significant gender difference (testing P value for
difference in gender-specific effect size estimated by beta
value, Pdifference < 0.01). Female-specific variants were
identified as (i) significantly associated with taxa in
females (Pfemale < 5 × 10−8) and not significant in males
(Pmale > 0.05), and (ii) had nominal significant gender
difference (Pdifference < 0.01, as explained below).
For each variant (SNP/INDEL/CNV) and for the phe-

notype (relative abundance of taxa), we computed P values
(Pdifference) testing for difference between the male-specific
and female-specific beta-estimates bmale and bfemale using
the T-statistic (bmale− bfemale)/sqrt (semale²+ sefemale²−
2*corr (bmale, bfemale)* semale * sefemale) with semale and
sefemale being the standard errors of bmale or bfemale. The
correlation between the gender-specific beta-estimates was
computed as the Spearman rank correlation coefficient
across all variants for each phenotype.

Gene expression and differential analysis
We used GEPIA67 (Gene Expression Profiling Inter-

active Analysis), a web-based tool to deliver fast and
customizable functionalities based on the Cancer Genome
Atlas and genotype-tissue expression (GTEx) data. We
performed the differential expression analysis for genes
NXN and PARVB across COAD and READ types com-
pared with paired normal samples, respectively. We
choose log2(TPM+ 1) transformed expression data for
plotting. We used ANOVA method for differential ana-
lysis. Genes with higher |log2FC | > 0.2 and p values < 0.05
are considered differentially expressed genes.
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