

HiPure Plasmid EF Maxi Kit

低内质粒大提试剂盒

本产品采用改良硅胶柱纯化技术,适合于从 100~300ml 细菌培养液中提取高浓度和高产量的低内毒素质粒 DNA。纯化的质粒产量高达 5mg,内毒素含量<1EU/μg,浓度高达 3μg/μl,可直接用于细胞转染和动物注射等。60 分钟内可以完成整个抽提工作,操作过程不需接触酚氯仿等有机物抽提,也无需用到耗时的醇类沉淀。

产品组份

产品编号	P1114-01	P1114-02	P1114-03
包装次数	2 次	10 次	50 次
RNase A	10 mg	30 mg	100 mg
Buffer E1	25 ml	120 ml	550 ml
Buffer E2	25 ml	120 ml	550 ml
Buffer E3	25 ml	120 ml	550 ml
Buffer E4	25 ml	120 ml	550 ml
Buffer E5	25 ml	120 ml	550 ml
Buffer EVVB	25 ml	120 ml	550 ml
Buffer PVV2*	20 ml	25 ml	2 x 100 ml
Buffer TE	6 ml	20 ml	120 ml
Buffer ER2	1.8 ml	5 ml	15 ml
中量过滤器(30ml)	2	10	50
红色大柱 E6	2	10	50
50ml 离心管(带垫片)	2	10	50
5ml 尖底离心管	2	10	50

版本号: 202501

保存条件

本产品在室温下保存 18 个月。RNase A 干粉室温运输和保存,长期保存(>3 个月)放置于-20~8℃。低温下,Buffer E2/E4 会有沉淀形成,37~55℃水浴使沉淀完全溶解。

准备事项

- 加入~0.5ml Buffer E1 至 RNase A 干粉中, 吸打混匀 5~10 次让 RNase A 干粉充分溶解,
 把 RNase A 全部转移至 Buffer E1 中, 于 2-8℃保存,有效期为 6 个月。
- 按瓶子标签所示,加入适量的无水乙醇稀释 Buffer PW2,于室温保存。
- 低温下, Buffer F4 有沉淀析出, 于 55℃温浴溶解。
- 抽滤或离心操作:本产品适用于负压抽滤操作,也适合离心操作(水平转子和角度转子均可)。水平桶装离心机离心速度设为4,000-5,000rpm;角度离心机离心速度设为6000-8000rpm。

实验步骤

将单克隆菌斑接种于含 1ml LB/抗生素培养基的 5-10ml 培养管中, 37℃摇床培养 6~8 小时进行小量扩增菌液。

培养方法:在无菌条件下,用灭菌牙签挑取一单菌落,转移 1ml 含相应抗生素的 LB 培养基中,37℃摇床(200-300rpm)培养 6-8 小时。甘油保存菌种在保存过程可能会丢失载体,先划平板进行活化,用灭菌牙签挑取一单菌落进行初步培养。

在◆0.5L 培养瓶加入 100~150ml LB/抗生素培养液;或在■2L 培养瓶中加入 200~300ml LB/抗生素培养液,接种 0.001 倍初级菌液至培养瓶中,37℃摇床培养 14·16 小时。

培养瓶容量最好超过培养液体积的 4-5 倍。培养过夜后可通过菌液密度或 OD600 来判断,培养良好的菌液[LB 培养液], OD600 应该在 2.0-3.0。本产品不要用 TB 或 2 x YT 等丰富培养基进行培养细菌。使用 TB/YT 培养基时,会导致 RNA 去除不干净。红色大柱最大结合力为 3mg, 用户可根据质粒拷贝数选择合适的菌液用量。

3. 8000rpm 离心 3 分钟收集◆100~150ml 或■200~300ml 菌液, 倒弃培养基, 在吸水纸上 轻轻拍打以吸尽残液。

采用水平离心机,5000rpm 离心10分钟就可以充分收集细菌。

- 4. 加入◆7ml 或■10ml Buffer E1/RNase A 混和液,高速涡旋或吸打充分重悬细菌。 充分重悬对产量很关键,重悬后应看不到明显菌块。若涡旋未能打散菌块,用移液器吸打数次。
- 5. 加入◆7ml 或■10ml Buffer E2, 温和地上下颠倒并转动离心管 10~15 次, 室温静置 3 分

钟,其间颠倒混匀 6-8 次。

颠倒混匀不要涡旋。充分裂解后,整个溶液变成均一溶液而且透亮。涡旋会造成基因组污染。当 菌液用量达 300ml 时,裂解液会极为粘稠,属高密度碱裂解类型,混匀时需要更多颠倒和翻转 动作,并轻稍振荡让菌体充分裂解形成均一无团块透光裂解液,总裂解时间不要超过 5 分钟。

加入◆7ml 或■10ml Buffer E3 至裂解液,上下颠倒混匀 15~20 次或直至形成蛋花状混合液,8,000rpm 离心3分钟。

加入 Buffer E3 后应立即稍快速上下颠倒混勾以避免产生局部沉淀。当菌液用量达 300ml 时,属于高密度碱裂解中和类型,中和时会形成大块且紧密沉淀团,混匀时需要更多颠倒和翻转动作,并轻稍振荡让大块沉块团分散成较少团块,让 Buffer E3 完全渗透到沉淀内部进行充分中和。采用水平离心机,5000rpm 离心 10 分钟就可以充分收集细菌。

7. 取出过滤器活塞,把第6步的上清液倒入过滤器中,把活塞插入过滤器,推动活塞使中和液过滤到50ml 离心管中。

处理 200-300ml 菌液时, 先转移~20ml 上清液进行过滤, 过滤后缓慢取出活塞, 把余下上清液转移至针筒进行过滤。取出活塞时若内环或滤膜轻动, 再推回活塞压紧内环和滤膜后再缓慢拨出活塞, 不要让滤膜和内环移位或松动。

- 8. 测量滤液体积,加入 1/3 倍体积 Buffer E4 至滤液中,颠倒混匀 10~15 次。
- 9. 将红色大柱 E6 套在 50ml 收集管,转移不超过 17ml 混合液至柱子中。8,000rpm 离心 1分钟。

第 9-13 步可以采用负压抽滤操作,抽滤完毕后按第 14~18 步进行空甩和洗脱操作。 第 10~18 步也可用水平桶装桶装离心机,把离心速度调至最高(5000rpm)离心 2~3 分钟。

- 10. **倒弃滤液,把柱子套回收集管,把剩余混合液转移至柱子。**8,000rpm 离心 1 分钟。重复此步直至所有混合液都转移至柱子中离心过滤。
- 11. **倒弃滤液,把柱子套回收集管,加入8 ml Buffer E5,**8,000rpm 离心1分钟。
- **12. 可选: 倒弃滤液,把柱子套回收集管,加入 8 ml Buffer EWB,**8,000rpm 离心 1 分钟。 新增加 Buffer EWB 可以进一步清洗去除内毒素。
- 13. **倒弃滤液把柱子套回收集管,加入 8 ml Buffer PW2,** 8,000rpm 离心 1 分钟。
- 14. **倒弃滤液把柱子套回收集管,8,000rpm 离心5分钟甩干柱子的滤膜。** 采用水平离心机,速度调整至最高(>5000rmp)离心10分钟干燥柱子。
- 15. 取出柱子,55℃烘干 10分钟干燥柱子的滤膜。倒弃收集管废液,反扣于吸水纸拍打吸尽 残液,晾干后用于第 16 步收集洗脱液。

- 16. 在 50ml 离心管中,放入一个 5ml 尖底离心管中,红色大柱 E6 插入 50ml 收集管,并让离心管底部对准离心管管口。
- 17. 加入 1.5ml Buffer TE 或灭菌水至柱子中, 静置 3 分钟, 8,000rpm 离心 3 分钟。
- 18. 再加入 1.0~1.5ml Buffer TE 或灭菌水至柱子中,静置 3 分钟,8,000rpm 离心 3 分钟。弃子柱子,取出 5ml 离心管中,把质粒 DNA 保存于-20℃ 或待用。
 - 由于滤膜存在吸水性,~0.3ml 洗脱液损失,每次洗脱用量不要低于 1000ul,并进行两洗脱液。
 - 这一步得到的质粒 DNA 可以直接用于细胞转染。由于 Buffer TE 不含防腐剂,建议用新配制的 灭菌水或把 Buffer TE 重新灭菌后使用,以防止微生物感染。质粒 DNA 用于动物注射或敏感细胞转 染,建议用附加流程用 Buffer ER2 (Triton X-114)抽提进一步降低内毒素水平。
 - 低拷贝载体或富含 RNA 菌种,质粒 DNA 中可能会含有 RNA 污染,OD260 吸光值升高,造成 质粒 OD 浓度与电泳亮度不符合,用电泳校准核酸浓度后使用或用附加流程,异丙醇重沉淀去除 RNA,让质粒 OD 浓度更为准确。

附加流程: 进一步纯化质粒 DNA (注 射 级)

- 1. **取质粒 DNA (第 18 步) 至 2.0ml 离心管中,加入 0.1 倍 Buffer E3,颠倒混匀。** 为了方便操作,转移 0.9ml DNA 溶液至 2.0ml 离心管中,加入 0.1ml Buffer E3。用 Buffer E1/RNase 把 DNA 溶液调整好倍数,如 0.9ml,1.8ml 或 2.7ml,以方便分到 1-3 个 2.0ml 离心管中操作。以下操作因离心力要求高,在 2.0ml 离心管中操作更方便。
- - 重复离心步骤,并确保离心机已完全恢复至室温。若质粒用于动物注射或高敏应用,建议重复第2步两次以达到无内毒素级。
- 3. 加入 0.8 倍体积(上清液体积)的异丙醇, 颠倒混匀 10-15 次。室温静置 5min, 13,000rpm 离心 10min。
 - 离心后, DNA 沉淀物有可能看不到,特别是处理中低拷贝数载体时, DNA 产量太少形成的沉淀 更不可见。受离心机角度影响, 部分 DNA 沉淀可能粘附的管壁上。若 DNA 沉淀粘附不紧, 离 心后取出离心管后再颠倒数次让沉淀从管壁上脱落, 再重复离心步骤。
- 4. **小心倒弃上清液,加入 1.0ml 的 75%乙醇,涡旋 5 秒,13,000 rpm 离心 3min。** 小心倒弃上清液,再短暂离心,吸尽所有残液,空气干燥 5min。
- 5. 加入适量灭菌水至沉淀中,涡旋混匀,室温放置 5-10min 让质粒充分溶解。